Crystal Structure

Tetracarbonyl(diphenyldithio-phosphinato-S, \mathbf{S}^{\prime})rhenium(I)

Soledad García Fontán, Elvira Lamas Castro, Pilar Rodríguez Seoane and Ezequiel M. Vázquez-López*

Departamento de Química Inorgánica, Facultade de Ciencias-Química, Universidade de Vigo, 36200-Vigo, Galicia, Spain
Correspondence e-mail: ezequiel@uvigo.es

Received 22 January 2001
Accepted 31 January 2001

The title compound consists of $\left[\operatorname{Re}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{PS}_{2}\right)(\mathrm{CO})_{4}\right]$ molecules in which the Re atom is octahedrally coordinated by four carbonyl groups and two dithiophosphinate S atoms. The main coordination distortion is imposed by the ligand bite angle of $78.29(4)^{\circ}$. The bidentate coordination of the dithiophosphinate ligand involves almost equal $\mathrm{Re}-\mathrm{S}$ [2.5366 (15) and $2.5535(14) \AA$ and $\mathrm{P}-\mathrm{S}$ distances [2.0100 (19) and 2.0212 (19) Å].

Comment

The dithiophosphinate ligand is a very versatile chelating ligand in transition metal coordination chemistry. Consequently, a great number of metal and organometallic complexes are known (Haiduc et al., 1995). However, the corresponding derivatives of carbonyl complexes of group seven are rather scarce. This is surprising because they have been used as suitable precursors in the synthesis of dinuclear (Thiele et al., 1974a, and references therein) or cis-disubstituted complexes (Lindner \& Berke, 1972). Additionally, structural knowledge of the carbonyl complexes of group seven metals can be applied in comparative studies of other dithioligand complexes with interesting properties, such as luminescence (Leirer et al., 1998). As part of a study of the coordination behaviour of the $\left[\operatorname{Re}(\mathrm{CO})_{3}\right]^{+}$and $\left[\operatorname{Re}(\mathrm{CO})_{4}\right]^{+}$ moieties, we have synthesized $\left[\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$, (I), by a similar method to that of Lindner \& Matejcek (1970).

(I)

The structure of (I) consists of isolated $\left[\mathrm{Re}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$ molecules with no unusually short contacts. The dithiophosphinate ligand links to rhenium in an almost symmetrical
bidentate mode. The $\mathrm{Re}-\mathrm{S}$ distances are close to those found in the dimeric $\left[\mathrm{Re}_{2}\left(\mu-\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}(\mathrm{CO})_{6}\right]$ complex $[2.535(8)-$ 2.570 (11) \AA; Thiele et al., 1974a], but slightly longer than in the dithiocarbamate analogues $\left[\operatorname{Re}\left\{\mathrm{S}_{2} \mathrm{CN}(\mathrm{H}) \mathrm{Ph}\right\}(\mathrm{CO})_{3^{-}}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] [2.512 (5) and $2.525 \AA$; Rossi et al., 1987] and $\left[\operatorname{Re}\left\{\mathrm{S}_{2} \mathrm{CN}(\mathrm{H}) \mathrm{Tiaz}\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)\right]$ (Tiaz is thiazol-2-yl; Rossi et al., 1988), the dithiocarboxylate $\left[\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{CPh}\right)(\mathrm{CO})_{4}\right](2.49 \AA$; Thiele \& Liehr, 1971) or the trithiocarbonate $\left[\mathrm{Re}_{4}\left(\mathrm{CS}_{3}\right)_{2^{-}}\right.$ $\left.(\mathrm{CO})_{16}\right]$ (2.487-2.514 A; Thiele et al., 1974b). The Re-C distances corresponding to carbonyl groups trans to the S atoms are systematically shorter. In agreement with the latter, the corresponding $\mathrm{C}-\mathrm{O}$ distances are slightly increased. Similar effects have been observed in $\left[\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)(\mathrm{CO})_{4}\right]$ (Almond et al., 1995) and suggest some π-donor character of the dithiophosphinate ligand.

Figure 1
ZORTEP (Zsolnai \& Huttner, 1994) drawing of $\left[\operatorname{Re}\left(\mathrm{S}_{2} \mathrm{PPh}_{2}\right)(\mathrm{CO})_{4}\right]$. Atoms represented as displacement ellipsoids are drawn at the 30% probability level.

The P atom lies 0.532 (2) \AA out of the plane defined by the Re and S atoms and the two carbonyl groups trans to the dithiophosphinate ligand ($\mathrm{Re} / \mathrm{C} 3 / \mathrm{O} 3 / \mathrm{C} 4 / \mathrm{O} 4 / \mathrm{S} 1 / \mathrm{S} 2$, r.m.s. deviation $=0.017 \AA$). The chelation mode places a phenyl group almost parallel to the vector $\mathrm{Re}-\mathrm{C} 1-\mathrm{O} 1$ (Fig. 1), whereby the shortest distances $\mathrm{C} 1 \cdots \mathrm{C} 16$ and $\mathrm{C} 1 \cdots \mathrm{C} 11$ [3.417 (10) and 3.497 (9) Å, respectively] are slightly longer than double the van der Waals radius $(1.70 \AA$) of carbon (Spek, 2000). The resulting four-membered $\mathrm{ReS}_{2} \mathrm{P}$ ring is not planar; the angles are $\mathrm{S} 1-\mathrm{Re}-\mathrm{S} 278.29(4)^{\circ}, \mathrm{P}-\mathrm{S} 1-\mathrm{Re}$ 85.52 (6) ${ }^{\circ}, \mathrm{P}-\mathrm{S} 2-\operatorname{Re} 84.85$ (6) ${ }^{\circ}$ and $\mathrm{S} 1-\mathrm{P}-\mathrm{S} 2105.71$ (8) ${ }^{\circ}$, and the fold angle about the $\mathrm{S} 1 \cdots \mathrm{~S} 2$ vector is 26.47 (6) ${ }^{\circ}$.
The coordination polyhedron around the Re atom can be described as a slightly distorted octahedron, the main distortion being imposed by the ligand bite [$\left.\mathrm{S} 1-\mathrm{Re}-\mathrm{S} 278.29(4)^{\circ}\right]$. The $\mathrm{P}-\mathrm{S}$ distances are practically identical and consistent with the bidentate character of the ligand. They are also close to those found in $\left[\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)(\mathrm{CO})_{4}\right]$ [2.004 (4) and 2.008 (4) Å; Almond et al., 1995].

Experimental

The title compound was obtained by a similar method to that reported by Lindner \& Matejcek (1970) using $\left[\operatorname{ReBr}(\mathrm{CO})_{5}\right]$ and $\mathrm{HS}_{2} \mathrm{PPh}_{2}$ in toluene. Single crystals of the compound were obtained by storing the mother liquor at 269 K for a few days. Analysis found: C 33.1, H 1.9, S 10.4\%. $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{PReS}_{2}$ requires: C 33.2, H 1.7, S 11.0%. Mass spectrum (FAB-NBA; $m / z, \%$): $|M|^{+} 453$ (31), $|M-\mathrm{CO}|^{+} 424$ (100), $|M-2 \mathrm{CO}|^{+} 396$ (19), $\mid M-3 \mathrm{CO}^{+} 368$ (17), $|M-4 \mathrm{CO}|^{+} 340(11)$. IR (Raman) spectrum ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $1925(s)$ [1927 (s)], $1983(m) \quad[1976(s)], \quad 2004(m) \quad[1991(m)], \quad 2102(s)$ $[2100(s)] \quad v(\mathrm{CO}), \quad 571(s) \quad[$ none $] ~ \nu_{\text {asym }}\left(\mathrm{PS}_{2}\right), 493(s) \quad[495(s)]$ $v_{\text {sym }}\left(\mathrm{PS}_{2}\right) .{ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): 184.4, $184.2 \delta(\mathrm{CO})$. $\delta\left({ }^{31} \mathrm{P}\right)=124.3$ p.p.m.

Crystal data

$\left[\operatorname{Re}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{PS}_{2}\right)(\mathrm{CO})_{4}\right]$
$M_{r}=547.53$
Orthorhombic, Pbca
$a=16.11600$ (10) \AA
$b=12.8286$ (2) Å
$c=17.5930(3) \AA$
$V=3637.28(9) \AA^{3}$
$Z=8$
$D_{x}=2.000 \mathrm{Mg} \mathrm{m}^{-3}$

> Mo $K \alpha$ radiation
> Cell parameters from 23344 reflections
> $\theta=2.3-28.3$
> $\mu=7.015 \mathrm{~mm}^{-1}$
> $T=293(2) \mathrm{K}$
> Prism, light brown $0.20 \times 0.15 \times 0.10 \mathrm{~mm}$

Data collection

CCD area-detector diffractometer φ and ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.271, T_{\text {max }}=0.551$
23344 measured reflections
4518 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.098$
$S=0.977$
4518 reflections
217 parameters

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Re}-\mathrm{C} 3$	$1.920(6)$	$\mathrm{S} 1-\mathrm{P}$	$2.0100(19)$
$\mathrm{Re}-\mathrm{C} 4$	$1.929(7)$	$\mathrm{S} 2-\mathrm{P}$	$2.0212(19)$
$\mathrm{Re}-\mathrm{C} 1$	$1.993(7)$	$\mathrm{O} 1-\mathrm{C} 1$	$1.128(7)$
$\mathrm{Re}-\mathrm{C} 2$	$2.004(7)$	$\mathrm{O} 2-\mathrm{C} 2$	$1.123(8)$
$\mathrm{Re}-\mathrm{S} 1$	$2.5366(15)$	$\mathrm{O} 3-\mathrm{C} 3$	$1.148(7)$
$\mathrm{Re}-\mathrm{S} 2$	$2.5535(14)$	$\mathrm{O} 4-\mathrm{C} 4$	$1.130(7)$
$\mathrm{C} 3-\mathrm{Re}-\mathrm{C} 4$	$91.1(2)$	$\mathrm{C} 1-\mathrm{Re}-\mathrm{S} 1$	$93.6(2)$
$\mathrm{C} 3-\mathrm{Re}-\mathrm{C} 1$	$90.7(2)$	$\mathrm{C} 2-\mathrm{Re}-\mathrm{S} 1$	$87.2(2)$
$\mathrm{C} 4-\mathrm{Re}-\mathrm{C} 1$	$86.6(3)$	$\mathrm{C} 3-\mathrm{Re}-\mathrm{S} 2$	$172.41(17)$
$\mathrm{C} 3-\mathrm{Re}-\mathrm{C} 2$	$91.3(2)$	$\mathrm{C} 4-\mathrm{Re}-\mathrm{S} 2$	$96.28(18)$
$\mathrm{C} 4-\mathrm{Re}-\mathrm{C} 2$	$92.4(3)$	$\mathrm{C} 1-\mathrm{Re}-\mathrm{S} 2$	$91.43(19)$
$\mathrm{C} 1-\mathrm{Re}-\mathrm{C} 2$	$177.8(3)$	$\mathrm{C} 2-\mathrm{Re}-\mathrm{S} 2$	$86.80(17)$
$\mathrm{C} 3-\mathrm{Re}-\mathrm{S} 1$	$94.30(17)$	$\mathrm{S} 1-\mathrm{Re}-\mathrm{S} 2$	$78.29(4)$
$\mathrm{C} 4-\mathrm{Re}-\mathrm{S} 1$	$174.57(18)$	$\mathrm{S} 1-\mathrm{P}-\mathrm{S} 2$	$105.71(8)$

SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1448). Services for accessing these data are described at the back of the journal.

References

Almond, M. J., Drew, M. G., Sarikahya, F. \& Senturk, O. S. (1995). Polyhedron, 14, 1433-1437.
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
Haiduc, I., Sowerby, D. B. \& Lu, S.-F. (1995). Polyhedron, 14, 3389-3472.
Leirer, M., Knör, J. \& Vogler, A. (1998). Inorg. Chem. Commun. 1, 49-50.
Lindner, E. \& Berke, H. (1972). J. Organomet. Chem. 39, 145-156.
Lindner, E. \& Matejcek, K.-M. (1970). J. Organomet. Chem. 24, C57-58.
Rossi, R., Marchi, A., Duatti, A., Magon, L., Casellato, U. \& Graziani, R. (1987). J. Chem. Soc. Dalton Trans. pp. 2299-2303.

Rossi, R., Marchi, A., Duatti, A., Magon, L., Casellato, U. \& Graziani, R. (1988). J. Chem. Soc. Dalton Trans. pp. 899-903.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1995). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. Utrecht University, The Netherlands.
Thiele, G. \& Liehr, G. (1971). Chem. Ber. 104, 1877-1879.
Thiele, G., Liehr, G. \& Lindner, E. (1974a). Chem. Ber. 107, 442-447.
Thiele, G., Liehr, G. \& Lindner, E. (1974b). J. Organomet. Chem. 70, 427-435. Zsolnai, L. \& Huttner, G. (1994). ZORTEP. University of Heidelberg, Germany.

